TEORIA DELLE DERIVATE
Premessa

Consideriamo due tipi di funzioni, quelle /ineari e tutte le altre. Scegliamo tre

funzioni

flz)=5z+3, g(z)=1-2z, p(z)=2x’

r|5c+3|1—2x | x?
0 3 1 0
1 8 —1 1
2 13 —3 4
3 18 -5 9




Indichiamo con Ax la differenza tra un valore di x e il precedente, cioé I'incremento
della variabile x, e con A f, Ag e Ap i corrispondenti incrementi per le funzioni.
Notiamo che per Az = 1 avremo Af =5 e Ag = —2 costantemente, mentre
Ap varia di volta in volta. Consideriamo ora una variazione della z, Ax = 0.5

r |5x+3|1—2x| z°
0 3 1 0
0.5 5.5 0 0.25
1 38 —1 1
1.5 | 10.5 —2 2.25
2 13 —3 4
2.5 155 —5 6.25
3 18 —5 0

Ora per Az = 0.5 avremo Af = 2.5 e Ag = —1 costantemente. Le funzioni
lineari variano in quantita uguali, mentre Ap varia in maniera non costante.




Avendo dimezzato |'incremento della x, la prima funzione che prima aumentava
di 5 ora ha un incremento di 2.5, mentre la seconda che diminuiva di 2 ora
diminuisce di 1.Infatti

Af 5 Ag -2
_— = — = 5 e —— — — —2
Ax 1 Ax 1
e
Af 25 Ag —1 5
p— p— e — —— —= —
Ax 0.5 Ax 0.5

Per le funzioni lineari il rapporto tra la variazione del valore della funzione e
la variazione della variabile = rimane costante. Proprieta delle funzioni lineari:
la loro variazione é proporzionale alla variazione di x. Geometricamente tale
rapporto non é altro che il coefficiente angolare delle rette che rappresentano
le funzioni f e g.



Vediamo ora cosa succede alla funzione p(z) = x2.Calcoliamo direttamente i

rapporti tra variazione di p e variazione di x

| rapporti tra i due incrementi variano da punto a punto.

(2+0.5)°—x?
2 v 0.5

R 0 | (0.25—0)/0.5=05
0 1-0=1| |05 (1—-025)/05=15
1| 4-1=3 | €[ 1 |(225-1)/05=25
2 9_4=5 15 | (4 —2.25)/0.5 = 3.5
3(16-9=7 2 [ (625 _4)/0.5 =45

25| (9—6.25)/05 =55

In questo caso

aumentano all’'aumentare di . Consideriamo due valori di x, g € 1. Avremo

Ap ==z

2 2

1— 25 € Az =x1 — 29



Se chiamiamo
Tr1 = X0 + h
dove h = Ax che non deve essere necessariamente positiva. Si ha
Ap:$%—$%:(CBO—|—h)2—CU%:$%+2h$0—|—h2—$%:2h$0—|—h2

e quindi

2 2 2
Ap:xl—xOZZha:(H—h — 2wg + h
Ax 11— xg h

Il rapporto tra le variazioni della funzione e della variabile varia sia a seconda
del valore iniziale di xg sia a seconda dell'incremento della x, h. Per valori di
h non molto grandi, tuttavia, il rapporto cosiderato & un numero abbastanza
vicino a 2x

2 — m% ~ 2xq (x1 — 0)



Definizione di derivata. Prime proprieta.

Definizione 1 Data una funzione f : A C R — R e un punto xg € A,

chiameremo il rapporto

Af _ f(z) — f(=o)

Aczx T — T

il rapporto incrementale della funzione f nel punto xq, relativo all'incremento

L — XQ-

Il rapporto incrementale rappresenta il tasso di variazione medio di f relativo

all'incremento di variabile da xzg a x.
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Il significato geometrico del rapporto incrementale: si verifica facilmente che si
tratta del coefficiente angolare della retta passante per i punti A(xg, f(xg)) e
B(z, f(x)), retta che si chiama secante il grafico

Se passiamo al limite per x — xg supponendo che tale limite esista, avremo
che il punto B si muove lungo il grafico di f verso A. Quindi tutte le rette



secanti in B e A variano la loro pendenza fino ad una retta limite che prende
il nome di retta tangente al grafico di f nel punto A: |la sua pendenza prende
il nome di derivata di f nel punto xg.

Definizione 2 Sia f : A CR — R e un punto xg € A; f si dice derivabile
in xq se esiste ed é finito il limite del rapporto incrementale

i F(@) = flzo)

—T0 T — X

f (o) =

che prende il nome di derivata (prima) di f in xq. La derivata prima si puo

d
anche indicare con uno di questi altri simboli (D f) (xg), é (zg) .

Se il rapporto incrementale pud essere interpretato come tasso di variazione
medio di f nell'intervallo di estremi xg e x, la derivata pud essere interpretata
come tasso di variazione puntuale.



Osservazione. La derivabilita di una funzione in un punto xg del suo dominio
puod essere interpretata come la condizione per l'esistenza della retta tangente
al grafico della funzione nel punto (xq, f(xg)). Si deduce che se f & deriv-
abile in xg I'equazione della retta tangente al grafico della funzione nel punto

(zg, f(xg)) & data da
y — f(20) = f (z0)(z — o)

Abbiamo gia visto negli esempi introduttivi che per funzioni lineari affini la
derivata in qualsiasi punto xg € costante e pari a m, coefficiente angolare della
funzione lineare considerata. Infatti data la retta

Yy = mx + q
se ci spostiamo da un suo punto (xq,yg) ad un altro punto (x,y) troviamo
che
Ay y—yo mxrt+q—mazg—q m(z—x0)
Axr = — xg x — g T — T

m




Inoltre avevamo trovato che per f(z) = 2

Af _a?—ad  (a+a0)( — )
Ax x—xz9 T — T

=T+ X0

Per x — xg

i + 2
— =z 4+ x9 =2z
Az 0 0




Quindi man mano che B si muove lungo la parabola verso A le rette secanti in
B e A si assestano sulla retta tangente alla parabola nel punto A, di equazione

y = :13(2) + 2xg(z — x0)

Il numero 2xq, coefficiente angolare della tangente, & la derivata della funzione
f(x) = 2 nel punto x.

Osservazione. Se, nella definizione di rapporto incrementale e successivamente
di derivata, poniamo x — xg = Ax = h, possiamo riscrivere la definizione di
derivata come
_ xo+ Ax) — f(x _ xo+ h) — f(x
i (20 ) — J( 0),oanche i f (@0 +h) — f(zo)
Axr—0 Ax h—0 h

Derivabilita e continuita. Derivate destre e sinistre.

Una funzione derivabile non puo avere salti o altre discontinuita.



Teorema 3 (Continuita delle funzioni derivabili). Se una funzione f é
derivabile nel punto xq del suo dominio, allora f é continua in x.

Per x # xq si ha

f(x) — f(zo) =

0
. L e
Se ora x — xg, il secondo membro tende al prodotto di f (zg) che é finito e

0 quindi complessivamente tende a 0. Ma allora f(x) — f(xzq), ovvero f &
continua in xg.

Osservazione. Si noti che, come prova |'esempio della funzione f(x) = |x|, non
vale il viceversa di questo teorema: una funzione puo benissimo essere continua
in un punto, senza essere ivi derivabile. Cioé esistono funzioni continue ma non
derivabili. Quindi la continuita é una condizione necessaria ma non sufficiente



a garantire la derivabilita. La funzione f(x) = |x| & continua nell’origine ma
non ¢é derivabile. Infatti il suo rapporto incrementale ¢

FO+R) —f0) [hl—10] [1 se h>o0
h R ] -1 se h<O

Esistono dunque i limiti del rapporto incrementale da destra e da sinistra ma
sono diversi; quindi la derivata in xg = 0 di f non esiste.



Definizione 4 Si chiamano derivata destra e sinistra di f in xq i limiti (se
esistono finiti)

fi(zo) = hir8+f($0 + h})L — f(zo)
f_(x0) := lim f(zo + h) — f(o)

h—0— h

Precisamente quando in un punto xq esistono la derivata sinistra e destra di
f ma sono diverse tra loro, si dice che il punto xg & angoloso. Nel caso di
f(x) = |z| il punto g = 0 & un punto angoloso.



Le derivate delle funzioni elementari.

Funzione costante

k—k

. . : ) :
La funzione f(x) = k ha derivata nulla infatti f (x) = lim —— = 0.
h—0 h
Funzioni potenza n-esima.
La funzione f(z) = x potenza di grado uno, & derivabile e la derivata &

f(z) =1Vz € R

Sia ora n > 2 e cosideriamo la funzione f(x) = z™. Si ha

Af  (z+h)" =z
ho h




ma (z + k)" = 2™+na" " Lh+ potenze di h con esponente > 2 quindi avremo
che
Af
- =
se h — 0. Quindi f(x) = z'™ & derivabile e la sua derivata &

nz" 1 4 o(1) = na" !

f’(a:) = ngn 1

Osservazione. La formula appena trovata si estende al caso in cui |'esponente
sia un qualsiasi numero reale o.. Queste funzioni sono in generale definite per
x > 0 e quindi risultano derivabili f(x) = =%,

f/(x) — az® 1

Esempi.



1
D <—) — Dz 1= 272 = _ " definita e derivabile #+ 0,

72

1 3
D (—3> =Dz 3=-3z"%= ——4,definita e derivabile z # 0,

x x
Dy/@ = Da? — 2273 — 1 definita in [0, +-00) derivabile @ % 0

= = — = — : ,derivabile
x 2x NG efinita in 00 ivabile x
2 2 1 2
DVa2 = Dz3 = 273 = , definita in R e derivabile z # 0,
3 3T

Dxz? = 2z, e Dz3 = 322 definite in R e sempre derivabili.



S~

— X )

| grafici delle funzioni potenza hanno retta tangente verticale in £ = 0O se
0 < a < 1. Queste funzioni non sono perciod derivabiliin z = 0. Se o« > 1 i
grafici all'origine hanno pendenza nulla. Infatti:

+oo O0<a<l1
h) — (0 h&
lim f(h) = £0) _ lim —- = Iim+ho‘_1: 1 a=1
h—0T h h—0t h h—0 0 a>1



. / . .
Dunque per le funzioni potenza f, (0) esiste solo se o > 1. Analogamente si

puo trovare f;_(O) se f & definita su R.

Le funzioni esponenziali, logaritmiche e trigonometriche sono derivabili in ogni
punto del loro dominio. Ricordiamo 4 limiti gia visti che possono essere utili
per il calcolo delle derivate di queste funzioni.

et —1 _ 1

lim =1 lim(l+x)z=e
z—0 z—0

. SInx 1 —coszx

lim =1 [im =0
r—0 x x—0 X

Funzioni esponenziali.

La funzione f(x) = e ha derivata pari a se stessa. Infatti

x+h x
f(@) = tim ETM = @) i &
h—0 h h—0 h




R

e’ (eh — 1)
— lim — ¢e” lim —e

h—0 h h—0 h

Per la funzione g(x) = a®, con a > 0, si ha g/(ac) = a”Ina (vedremo piu
avanti perche).

Funzioni logaritmiche.

1
La funzione f(x) = Inx ha derivata pari a f/(ac) = —. Infatti
x

x+ h
f(2) = im f@ W = f@ _ | In@+h)—nz_ | n(——)
=00 h It h T o0 h N
In(l—l—ﬁ)
= |im L I|m1§|n(1—|— )—lllm In(l—l—h)%:

h—0 h h—>0$ xh—0



:§In<llm(1—|— —)h )zllnezi

h—0 T
11
Per la funzione g(x) = log,x, con a > 0, si ha g (:U) =i usando la
zlna
: : In x
formula del cambiamento di base log, x = g
na

Funzioni circolari

Cominciamo dalla funzione seno. Sia f(xz) = sinx; si ha

f () = lim f(x+h)— f(z) i sin(x + h) —sinz
~ h—0 h ~ h—0 h B

per la formula di addizione del seno, sin(a + 8) = sin acos 8 + cos a:sin 3,

avremo



; sinxcosh +cosxsinh —sinx
p— Im p—

h—0 h
, ~cosh—1 sinh

= |im (smaz + cosx) —
h—0 h

— O-sinx+1-cosx =cosx

Quindi Dsinx = cos x.

Ora proviamo che la derivata della funzione coseno é D(cosz) = —sinz,
ricordando la formula di addizione per il coseno, cos(a + 3) = cos acos 5 —
sin asin 8

f/(az) _ im f(x 4+ h) — f(x) _ im cos(xz + h) — cosx _

h—0 h h—0 h



cosxcosh —sinxsinh —cosx

= |im =
h—0 h
_ ( l1—cosh sinh . )
= |im | —coszx — sinx | =
h—0 h h
= 0-(—cosx)—sinx = —sinx
Quindi D cosx = —sinx.
Si trova facilmente che Dtanx = 12 e che Dcotx = —— 12
Cos=x SIN©™ X

Algebra delle derivate

Derivata del prodotto di una costante per una funzione.

D[kf(x)] = kDf(xz), £k costante



infatti

i (@) = kf(zo) _ . f(z) — flzo)

=20 T — I r—=T0 1 — 20

= kf (o)

Teorema 5 Se due funzioni f e g sono derivabili in un punto xq, anche la
somma,il prodotto e il quoziente (quest'ultimo se g & non nulla in xqg) sono
derivabili.

L. D(f+9)=f+4g

2.D(f-g9)=fg+fg

3. D(f/g) =919



Dimostrazione.

1. Per la somma:

(f(@) + 9(z)) = (f(wo) + 9(x0)) _ f(=) = f(wo) | g(x) = g(0)
T — g -z -1 T —
e prendendo il limite per x — xq si conclude che

(f(z) +g(z)) — (f(x0) + g(z0))

T — T

— f (z0) + g (z0).

2. Per il prodotto:

f(z)g(x) — f(x0)g(xo)

T — T




sottraiamo e sommiamo f(xqg)g(x) al numeratore:

f(z)g(z) — f(z0)g(x) + f(wo)g(z) — f(z0)g(w0) _

T — T

_ fz) = f(=o) o(z) + f(a )9(%’)—9(330)
T — X L0
passiamo al limite di z — xg

f(@)9(@) = [(20)9(20) _, ¢ (1) a(x0) + F(z0)g (x0)

T — T

3. Per il quoziente:

(@_f(wo)>< 1 )Zf(a?)g(wo)—f(wo)g(w) 1

g9(z)  g(xo)) \z — 20 9(x)g(xo) x — 20




sottraiamo e sommiamo f(xqg)g(xg) al numeratore

_ f(=)g(wo) — f(®0)g(z0) + f(z0)g(w0) — f(wo)g(z) 1

9(x)g(zo) T — 0
_ 1 (f(fﬂ)g(fﬂo) — f(z0)g9(z0)  f(=zo)g(x) — f(fﬂo)g(fﬂo)> _
g(z)g(zo) T — T T — 0

9(z)g(zo) T — T T — T
e passando al limite di x — x

(f(fv)_f(:vo)>< 1 ) ' (%0) 9(=0) — f(20)g (x0)

g(z) g(zo)) \z —xg 9°(xo)

Osservazioni.



La derivata del prodotto di piu fattori é uguale alla somma dei vari prodotti che
si ottengono derivando ciascun fattore e lasciando gli altri non derivati:

D [fi(z) - fo(z) - ... - fa(x)] =
= f1(2)-fo(@)-. . - fr(@)+ F1(2)- fo (@) . - Fr(@)+. . A f1(@)- fo(@)-. . ()

In particolare
D[f(@)]" = n[f(@)]" L f(z) conneNg

infatti si ha

Df()]" = D[f(z) f(z)-...- f(2)] =

n volte
= f (@) f(@) . f(@)+F(@)f (@) f(@) o+ f(@) () f (z) =
= n[f(2)]" ! f (=)




Derivata della funzione reciproca: sia f(x) una funzione derivabile e diversa da

zero allora
/

1 S

fx)  [f(@)

ESEMPI
1. D(xe®); D <:c2 -+ cosx) In x

|
2. D" ; DB; D(x sinx)
x

1 1 et
3. D— - D D
sinx + cosx 2 — 5 2x + 3




Derivata della funzione composta

Prendiamo due funzioni componibili f e g, tali cioé che se x appartiene al
dominio di g, la sua immagine tramite g, y = g(x) si trova nel dominio di f.
In questo caso possiamo parlare di f o g e quindi della funzione z = f [g(x)] .

Teorema 6 Se g é derivabile in x e f é derivabile in g(x) allora fog é derivabile
in x e vale la formula

(fog) (x) = f [9(2)] - g (x)

Questa regola viene anche chiamata regola della catena. Se infatti poniamo
z = f(y) con y = g(x) avremo
1 dz rdy

1 dz
(fog)_£7 f_d_y, g_dCU



per cul

dz dzdy

dr dydz
che esprime proprio che il tasso di variazione di z rispetto a x pud essere visto
come il prodotto dei tassi di variazione di z rispetto a y e di y rispetto a .

Esempi.
Calcolare la derivata di f(x) = sin(z? + = + 1)

Si pud considerare la funzione f composta dalle funzioni

z= f(y) =siny e y:g(a:)::p2+a:+1
dz

usando 42 — 424U . remo
dx ydx

d
_Z:cosy-(2x—|—1):(2x—|—1)cos<x2—|—x—|—1>
dx



Calcolare la derivata di f(z) = ¥/Inx. Allora

2= f(y)= ¥He y=g(x)=Ina

per cul
dz 1

1
b
dx 3y

Calcolare la derivata di f(x) = In(xz? + 1). Allora

2=f(y)=Inye y=g(x) =2°+1

per cul




Calcolare la derivata di f(z) = ¢""(?®T%) Allora in questo caso abbiamo la

composizione di tre funzioni
z=f(y)=¢€eY, y=g(t) =sint e t = h(z) =2x + 7/4

per cul
dz  dzdydt

dr  dydtdz
Nel nostro esempio quindi

d : ™
&% _ Y. cost - (2) = 2e5"(2*1%) cos(2z + z)
dx 4



Osservazioni.

- Con I'applicazione della regola di derivazione della funzione composta si puo
constatare che

Def (@) = f(@) £ (1)

f ()
f(z)

Din f(x) =

- Con I'applicazione della regola di derivazione della funzione composta, deter-

miniamo la

D [f(x)}9®)



dove f e g sono funzioni deivabili e con f(x) > 0. Per la definizione di
logaritmo si ha che Vx

[f(2)]9) = M@ — cg(@)in f(2)

e quindi

LﬂﬂmP@%:D&@”ﬁ@%=@@”ﬁ@lkkwmf@r+m@?%y%@

:f@w@-khmmmw+m@f“1

f(z)

- In particolare se g(x) = a € R

D[f(2)]* = a[f(@)]* - f ()



T

Esempio. Calcolare la derivata di f(z) = /
m JE—

D x _( x )%_1( x )‘5 r—1—x
z—1 \z—-1/ 2\z-1 (r—1)2
B —1 r—1
C2(x—1)2\ =z

Calcolare la derivata di f(x) = x*

|

1
Dx* =z*(Inx + 2—) = 2%(Inx + 1)
T



Derivata della funzione inversa

Ricordiamo che se f & una corrispondenza buinivoca tra due intervalli (a, b) e
(¢, d) si pud parlare di funzione inversa di f, g = f~1.

Teorema 7 Sia f una funzione strettamente monotona definita in un intervallo
e sia g la sua inversa. Se f é derivabile in un punto xq con derivata non nulla,

posto yo = f(xg), la funzione inversa é derivabile in yq e si ha

La regola di derivazione della funzione inversa pud essere giustificata geomet-

ricamente.






Il coefficiente angolare della retta tangente alla curva f(x) nel punto D é
esattamente la derivata di f calcolata in xqg.Cioe

f/(ato) = tan o

tan 3 invece rappresenta la pendenza della retta tangente alla curva inversa di
f nel punto F'. L'ipotesi f/(azo) =% 0 implica che la retta tangente non sia
parallela all'asse x. Le gia viste proprieta di simmetria tra una funzione e la
sua inversa, rendono evidente che le rette tangenti nei punti simmetrici D e F'
formano con l'asse x angoli, o e 3, tra loro complementari, quindi i coefficienti
angolari sono reciproci:
1
tan (3

tan o =

1
f'(z0)

che spiega geometricamente il significato di g/(yo) =



Derivate delle funzioni inverse delle funzioni goniometriche.

- Derivata della funzione f(x) = arctan .

La sua funzione inversa ¢ x = tan y, definita in (—%, %) , & derivabile nel suo

dominio. La derivata é

— 1+tan? Y

. . . 2 . 2
Sin COS Y COSs SIN Yy Sin COSs SN
Dtany:D< y)_ ycosy +sinysiny y +sin“y

cos Yy cos2 y cos2 y

Quindi g/(y) =1+ tan?y # 0. f & quindi derivabile e avremo

1 1 1

D arctanz = ——— =
Dtany 14tan?y 14 22

- Derivata della funzione f(x) = arcsin .



La sua funzione inversa & x = siny, definita in [—%, %] , & derivabile nel suo

dominio. La derivata é

Dsiny = cosy
T

Quindi g (y) = cosy # 0 in tutto l'intervallo aperto (—j,g). f & quindi

derivabile e avremo
_ 1 1
D arcsinx = _ =
Dsiny cosy

Ora sappiamo che sin2y + coszy =1 — cosy = \/1 — sin2y — COSY =

V1 — 22 quindi

1 1
D arcsinx = —
cosy V1 —x2
D 1 D . 1
- arccos r — — e arccotxr = —
V1 — 12 1+ 22




Funzione Derivata
k (
" neN\ {0}, zeR na™1
" ne. n=0, reR\ {0} natl
7 aek =10 art—1
a* a* . lna
I T
T o

log, ||

1
Inx -
x
sinr CO8 T
COS T —sinr
. o
toxr l4+tg"r =

0
cos= I




fo(x) nfel(z) - f'ix)
Y Fio T I

af(z) a'Ina) f'(x)

eflz) el @) f!(x)

{2

o %, s

oo e

fla) 7%

In f{x)

f'(z)
flz)

sin fix)

cos f(z) - f'(x)

Ccos g (x)

—sin fix) - f'{x)

tg flx)

f'(x)

(1+ to? fle)) fllz) = —5——
S cos? f(x)

fl:.f':'g[r] — ao(z) In f{x)

o
o) 1o o) L L i)
polz) In fiz] (_u'rlclr‘allllflclf‘,' + glz)—

f v
|
o II. ‘I g

)




PROPRIETA’ LOCALI. FUNZIONI DERIVABILI IN UN INTERVALLO.

Funzioni crescenti e decrescenti in un punto. Massimi e minimi relativi.

Definizione 8 Sia f : (a,b) — R e xg € (a,b). Se esiste un intorno di xg
contenuto in (a, b) tale che per ogni suo punto si abbia:

- da x < xq segue f(x) < f(xg) e contemporaneamente da x > xq segue
f(x) > f(xqg) allora la funzione si dice crescente in xq (crescente in senso
stretto se le disuguaglianze valgono senza I'uguale);

- da x < xq segue f(x) > f(xg) e contemporaneamente da x > xq segue
f(x) < f(xzq) allora la funzione si dice decrescente in xq (decrescente in
senso stretto se le disuguaglianze valgono senza I'uguale);



- f(x) < f(=zq), allora il punto xq si dice di massimo relativo (di massimo
relativo proprio se la disuguaglianza vale in senso stretto);

- f(x) > f(xg), allora il punto xq si dice di minimo relativo (di minimo
relativo proprio se la disuguaglianza vale in senso stretto).

Teorema 9 (Teorema di Fermat) Se una funzione é derivabile in un punto
xg che sia interno al dominio, e ha un massimo o minimo relativo in xq, allora

si ha necessariamente che

[(r) =0

Condizione del primo ordine (FOC) affinché z sia di estremo locale



Dimostrazione. Sia xg un punto, per esempio, di massimo relativo interno
al dominio. Se fosse f/(xo) > 0, la funzione sarebbe crescente in g, per
cui a destra di xg (e ci sono punti a destra di zg perché xqg & interno) la
funzione sarebbe piu grande di f (zg), contro l'ipotesi che xg sia di massimo.
Analogamente non pud essere f (zg) < 0. Dunque f'(zg) = 0.

Osservazioni.

e | punti in cui si annulla la derivata prima sono punti a tangente orizzontale
e si chiamano punti stazionari. | punti in cui si annulla la derivata prima o

questa non esiste sono detti punti critici.

e Per la validita del teorema é essenziale che si tratti di massimo e minimo

relativo interno al dominio.



E/sempio. La funzione y = sin x, considerata nell’intervallo [0, 27], ha derivata
Yy — COSI.

/ T 3 . . e
y =cosz = 0 per x = 5 €57 interni all'intervallo [0, 27]

3/2p

Nell'estremo £ = 0 si ha un minimo relativo, cosi pure neII'estrerT,\o 27 si ha
un massimo relativo, ma in questi punti risulta rispettivamente y (0) = 1 e
y (2m) = 1.



e || teorema di Fermat & una condizione necessaria per |'esistenza di estremi
relativi interni ad un intervallo. La condizione pero non é sufficiente: in un
punto la derivata prima pud annullarsi senza che in quel punto la funzione
abbia un massimo o un minimo relativo

Esempio. La funzione f(x) = x3 ha derivata nullain z =0 e f(0) =0

y A




Inoltre:
- perx <0: f(x) < 0= f(0);
- perz >0: f(z) > 0= f(0).

Nel punto x = 0, in cui si annulla la derivata di f(x), la funzione non ha
quindi né massimo, né minimo, perche non esiste un intorno di tale punto in
cui risulti sempre f(z) < f(0) = 0 oppure f(z) > f(0) = 0. Questo significa
che la tangente alla curva nel punto x = 0, pur essendo parallela all’asse =,

attraversa la curva.

e Un punto puo essere d'estremo per f anche se in tal punto la funzione non
& derivabile.



Esempio 1. La funzione f(x) = |x| non & derivabile in x = 0 infatti fir(O) #
f/_(O), ma & un minimo; infatti f(0) = 0, mentre per x # 0, f(z) > 0.

3 3
Esempio 2. La funzione f(x) = \/ 1— vV ) e definita per (1 — v :132) >0
cioé per —1 < x < 1. Non é derivabile in £ = 0 infatti

F () = ﬁ_

In questo punto la funzione ha un massimo, infatti f(0) =1lex # 0 f(z) < 1.

—>oopera:'—>0

y A g




Teoremi fondamentali per le funzioni derivabili in un intervallo

Teorema 10 (Teorema di Lagrange) Sia f : [a,b] — R una funzione con-

tinua in [a,b] e derivabile almeno in (a,b). Allora esiste almeno un punto c
€ (a,b) tale che

f(b) — f(a)
b—a

fe)=

Dimostrazione. Consideriamo i punti A (a, f(a)) e B (b, f(b)). La retta che
passa per A e B ha coefficiente angolare

f(b) — f(a)
b—a
ed equazione
y= (o) + 1= )



Ora consideriamo una nuova funzione data dalla differenza tra f e la funzione
lineare affine di sopra e avremo

o) = f(@) ~ f(a) - T )
che ha le stesse proprieta di regolarita di f (derivabilita) e in piu & tale che
g(a) = g(b) = 0. Alla funzione g possiamo applicare il teorema di Weierstrass:
esisteranno dunque due punti ¢ e d in uno dei quali la funzione assume il suo
massimo M, mentre nell’altro assume il suo minimo m. Se entrambi questi
punti coincidessero con gli estremi di [a, b], allora la funzione sarebbe nulla su
tutto l'intervallo [a, b], il grafico di f coinciderebbe con la retta e

() = f(bz), - Z:(a)

In caso contrario, almeno uno dei due punti, diciamo ¢, & interno all’intervallo

Vz € [a,b]



(a,b), allora in esso deve essere g/(c) = 0 (per il teorema di Fermat). Poiche

()= (@) - {211
—a
si conclude subito la tesi.

Il grafico mostra l'interpretazione geometrica del teorema: esiste un punto
interno ad [a, b] dove la tangente ¢ parallela alla secante passante per (a, f(a))

e (b, f(b)).

Y




Il caso particolare f(a) = f(b) del teorema del valor medio & noto come

teorema di Rolle.

Teorema 11 (Teorema di Rolle) Sia f : [a,b] — R una funzione continua
in [a,b] e derivabile almeno in (a,b) con f(a) = f(b). Allora esiste almeno

un punto c € (a,b) tale che

fe)=0

Osservazione. Se un arco di curva continua e dotato di tangente in ogni suo
punto, esclusi al piu gli estremi, ed ha uguali le ordinate degli estremi, esiste
almeno un punto interno all'intervallo della curva considerato dove la tangente

é parallela all’asse delle x.



=f(b)

f(@)



Se la derivata prima non esiste in qualche punto dell'intervallo, ad esempio
in qualche punto angoloso, allora il punto a tangente parallela all'asse x non
esiste.



Esempi. Dire se le seguenti funzioni soddisfano le ipotesi dell teorema di La-
grange nell’intervallo indicato, e in caso affermativo determinare |'ascissa del

punto c (o dei punti) che verifica il teorema.

a) f(z) =3 — x in [-2,2]. La funzione & continua nell'intervallo [—2,2] e
derivabile interamente ad esso. Infatti f/(x) =322 -1, e
lim f/(a:) = lim f/(:c) = [ in ogni g € [—2, 2]

Pertanto verifica |'ipotesi del teorema di Lagrange. Quindi

2) — f(—2 646
fo f@ -1 o 646
2 — (=2) 2 42
4 2+/3
¢® = — ossia c = + V3 entrambi interni a [—2, 2]



b) f(x) = |Inz| in [5,2] . La funzione & continua nell'intervallo, ma non &

1
derivabile in x = 1, interno a [5, 2] . Infatti

lnz z>1 . ooy : ooy
In z| _{ e <l xl_|>rr11+f (m)_l;éwll[rf_f (z) = —1 punto angoloso

<Y




Per le applicazioni sono importantissimi i seguenti tre corollari del teorema di
Lagrange.

Corollario 12 Se f é una funzione definita e continua in un intervallo [a,b] e
ha derivata > 0 in |a, b[, allora f é crescente in [a,b],; se ha derivata < 0 é
invece decrescente. Per dimostrarlo basta osservare che se prendo due punti

x1 € X9, con x1 < xo, si ha

f(z2) — f(z1)

L2 — I

= f(c)>0 = f(w2) — f(x1)

il contrario se la derivata é negativa.

Corollario 13 Se f é una funzione definita e continua in un intervallo [a,b] e
ha derivata = 0 in ]a, b[, é costante in [a,b]. Per dimostrarlo basta prendere



un punto x qualunque di [a, b] e osservare che si ha

f(z) — f(a)

r—a

= f(c)=0 = f(z) = f(a),

ovvero che f(x) si trova sempre alla stessa quota di f(a).

Corollario 14 Se f e g sono due funzioni definite e continue in un intervallo
[a, b] e con la stessa derivata in ]a,b|, allora la funzione f — g é costante in
[a, b]. Per dimostrarlo basta osservare che f — g ha derivata nulla in |a, bl.

Teorema di de Hospital

| teoremi di De Hospital consentono molto spesso di calcolare sotto certe con-
dizioni , i limiti di funzioni che si presentano sotto forma indeterminata. Con-

. . 0 . .
sideriamo ad esempio il caso 5 che si presenta quando si vuole calcolare un



limite

lim f(z) con lim f(z) = f(c) =0e limg(z) =g(c) =0

:1;—>cg(x) rT—C T—C

In questo caso possiamo scrivere il rapporto tra funzioni come rapporto di
rapporti incrementali

flx)  flx) = flc) _ flx)—f(e) x—c
g(xz)  g(z) —g(c) r—c g(r)—g(c)

Passando al limite per x — ¢, se f e g sono differenziabili in ¢ avremo

lim —= = |im f/(a:)
r=eg(z)  Tocg (@)




Teorema 15 (Teorema di de I'Hospital). Siano date due funzioni f e g
definite e continue in un intorno (che pud essere anche solo un intorno destro o
sinistro) di un punto c (eventualmente anche +o0c ), derivabili almeno nei punti
diversi da c, con g/(a:) # 0. Sia inoltre

lim f(z) = lim g(x) = 0 oppure alj@(jf(x) = limg(z) = o0

Ir—=C Ir—cC r—cC

/

Se esiste [ = lim f,( ) (finito o infinito), allora esiste anche il limite del
r=eg (z)

rapporto delle due funzioni ed & proprio uguale a [




Esempio 16 Calcolare il limite

_ e oo
Im — = —
T—+00 I o0
Possiamo applicare I'Hospital e avremo
. e g . e’
Im — = I|Im — = 40
r——+00 T r——+o00 1

La regola dell'Hospital si pud applicare anche piu volte in successione.

Esempio 17 Calcolare il limite

T T T

_ e 00 _ e” _ et g . e
[im — —> Iim —= |Im —= Im — =40
r—+oox? 0o z—+oox2 z—+o02x  T—+00 2

Jas




Esempio 18 Calcolare il limite

. sinx —x 0 o sinx —x [
lim = — — |im =
x—0 3 0 z—0 3
H . cosx—1 g —sinx 1
f— ||m 2 f— - ——
x—0 3z o6x §)

Esempio 19 Calcolare il limite

_ In2z oo _ Inx 7 . 21In :U%
lim = — = |im = lim —=%
z—+oo g3 00 z—+oo g3  z—+foo 3z2
1
H 2= _ 2
= |lim =L = Ilim — =0




Esempio 20 Calcolare il limite

T T s 1
. tan 7 50 . tan — . 5 (37 — ) 0
lim — — — |im = |lim e = —
:C—>1_|n(1 — IE) o0 x—>1_|n(1 — m) r—1— C052 = 0
2
. o T . .
a parte svolgiamo D cos ey funzione composta da tre funzioni:
5 T dz _ T T L . TX
z=y" y=cost t =— — — =2y(—sint)— = — | —2cos — sin —
2 dx 2 2 2 2
quindi
s
2 — o
T




Esempio 21 Calcolare il limite

lim zlnz =0 -
r—0T

Basta ricordare che

F(@)g(z) = f(w) g(z)

1
g(w) f(x)

. . 0 o ,
per essere ricondotti al caso — o —. La scelta della funzione da mettere al
denominatore non é indifferente.

1
. . Inz g . T
lim zlnzg = lim —— = lim Ll: im —xz=0
x—0Tt x—0T r—0t + -0t



Se avessimo sbagliato la scelta della funzione da mettere al denominatore

2

. , r H .. 1 . In“x _
lim xlnx = lim 1 = lim —1 = lim —T che porta ad una f.i.
x—0T x—0Tt r—0t -+ r—0+t +
Inx x x
In? z

Esempio 22 (Calcolare il limite

_ 1
l[im (cota:'— —) = 00 — OO
x—0 €

Cercare di riportare la differenza di funzioni sotto forma di quoziente o prodotto
per essere ricondotti ad un caso precedente. Infatti

_ 1 _ cosz 1 _ T COST — SINX 0
lim (cotx——>:llm( ——):Ilm( ):—

x—0 €T x—0\sinz x x—0 Tsin 0
H .. COSXT — X SINXL — COSXT _ —xsinx 0
= lim _ = lim | — = —

x—0 sinx + xcosx x—0 \sinx + x cosx 0



H .. —sinT — X COSX _ —sinT — X COSX
= |lim = |im —0

x—0 \cosx + cosx — xrsinx x—0\2cosx —xsinx

Esempio 23 Calcolare il limite

)cos T _ ooo

lim (tanx

r—I"

2
Possiamo riscrivere

lim coszIn(tanx)

lim (tanz)“**? = "2

x—I"

2
per la continuita della funzione esponenziale. Calcoliamo il limite all’esponente

In(tanz) oo

lim coszlIn(tanxz) =0-00 — lim i
r—L~ s T 0O




1 1

H . tanzcos2 . cosx 1 cos?zx
= lim : = lim — 5 =
z—T sinx z—2 7 SINT COS“T Sinx

cos?
CoS T
= ||m —2:0

TSN I
Si conclude che

lim (tanz)°% =0 =1
r—5

2



Massimi e minimi per una funzione

Abbiamo gia dato la definizione di massimo e minimo relativo per una funzione.
Se le disuguaglianze considerate valgono in tutto il dominio, si parla di punto
di massimo, o minimo, assoluto.

La ricerca dei massimi e minimi relativi o assoluti per una funzione riveste
grande importanza nelle applicazioni. Nel caso di funzioni derivabili, definite in
un intervallo I ricordiamo che :

1. Se un punto xg &, per una funzione f, di massimo o minimo relativo
. /
interno ad I, allora f (xg) = 0;

2. Se una funzione é crescente a sinistra di xg e decrescente a destra di xq,
xo € di massimo relativo.



3. Se una funzione e decrescente a sinistra di xg e crescente a destra di x,
xo € di minimo relativo.

Esempio 24 Per la funzione f(x) = x3 — 32 il dominio é tutto R. Si ha
f/(ac) — 322 — 6x. Studiamo il segno della derivata

f/(a:):3a:2—63320—>3a:(a:—2)20

- . . :
da cui f(x) > 0 perxz < 2 ex > 0 mentre é negativa in (0,2). La derivata
prima si annulla in x = 2 e x = 0.Riporteremo questi risultati in un grafico
come il seguente.

¥




Se consideriamo che
lim f(z) = o0, lim f(x)=—oo, [f(0)=0, [f(2)=—-4
Tr——+00 Tr——00
non ci sono asintoti orizzontali. Non ci sono neanche asintoti obliqui. L'andamento
del grafico della funzione x3 —3x2 é riportato sotto. | puntiz = 0 ex = 2 sono
rispettivamente punti di massimo e minimo relativo. Non esistono punti di
massimo o minimo assoluto. Infatti la funzione é illimitata.

= N w » [&)]
P R R B |
— 1 T 1




Osservazione 25 Finora abbiamo elencato le condizioni sufficienti per garan-
tire che un punto xq (che deve essere un punto critico), interno ad un intervallo
[a, b] dove la funzione sia continua e derivabile, sia un estremo relativo. Per
fare cio si richiede I'esame della derivata prima, f/(a:) in un intorno di xq .
Accanto a questo criterio di carattere "locale” conviene considerarne un altro,
anch’esso sufficiente ma di carattere "puntuale" e che richiede 'esistenza delle
derivate successive nel punto x .

Teorema 26 Sia f definita in (a,b), derivabile due (tre) volte in xq. Si abbia
inoltre che f/(azo) = 0. Se

n

f (xg) > 0 allora xg é un punto di mimimo relativo (forte)
1

f (zg) < 0 allora xq é un punto di mimimo relativo (forte)

/ mn

/
nell'ipotesi in cui f (xg) =0 e f (xg) # 0 allora xg non é un punto ne di
minimo ne di massimo relativo (ci sara un flesso che sara a tangente orizzontale



n

ascendente o discendente a seconda che risulti rispettivamente f (xzg) > 0 o
" "

f (zg) < 0). Nel caso in cui anche la f (xzg) = 0,si passa a calcolare le
derivate successive in xq.ll procedimento si arresta se si incontra una derivata
che non si annulla in xqg. Se essa é di odine pari allora avremo un massimo
o minimo relativo a seconda del segno della derivata. Mentre se é di ordine
dispari avremo un flesso.

Esempio 27 Determinare i punti di massimo e minimo relativo della funzione
f(x) = 423 — 922 + 6. Abbiamo

f,(w) = 1222 — 182+ 6 e f”(a:) — 24 — 18

Poiché f/(:c) esiste per ogni valore della x, i valori della x che annullano la
derivata prima solo

f/(aﬁ):12x2—18:1:+620perx:1ex:1/2

Essendo:



/1 1
o f <§> = —6<0—2x= 5 é un punto di massimo relativo per f(x);

1
e f (1)=6>0 — x = 0 é un punto di minimo relativo per f(z).



Funzioni convesse e concave

Abbiamo gia definito geometricamente una funzione f convessa in un intervallo
I C R richiedendo che presi due punti qualsiasi del grafico di f il segmento
congiungente questi due punti si trovi sopra il grafico stesso o possa al massimo
coincidere con un suo tratto. Se il grafico di una funzione convessa non contiene
tratti rettilinei allora la funzione si dice strettamente convessa. Una funzione
& concava, o strettamente concava, quando se —f & convessa o strettamente
convessa (funzioni di utilita).

¥
y




Per le funzioni derivabili due volte & possibile decidere se sono convesse o
concave: attraverso lo studio della monotonia della derivata prima si puo ri-

conoscere la concavita o convessita di una funzione.

Teorema 28 Sia f due volte derivabile in un intervallo (a,b). Allora le tre

condizioni sono equivalenti:

f convessa, f / crescente, f >0.

. . ! /!
Nelle funzioni concave, f decrescentee f < 0.



Osservazione 29 Se una funzione é convessa e tracciamo la retta tangente
al grafico in un punto qualunque, essa sta sempre sotto,; al piu se la funzione
presenta tratti rettilinei, la tocca oltre che nel punto di tangenza anche in tutto
questo tratto. La retta tangente al grafico di f in un punto xg ha equazione

y = f(w0) + f (z0)(z — z0)

Se f é convessa allora il suo grafico non andra mai sotto tale retta; cioé

f(@) > f(zo) + f (wo)(z — mo)

per ogni x,xqg € (a,b) . Per le funzioni concave basta rovesciare I'uguaglianza.




Teorema 30 Se xq é un punto stazionario per f, convessa (concava) in (a, b),
allora xq € punto di minimo (massimo) assoluto e f(xq) € il minimo (massimo)
valore assunto da f in tutto (a,b).

Questa proprieta rende estremamente utili le funzioni convesse (concave) nella
teoria dell'ottimizzazione e nelle applicazioni economiche.

PUNTI DI FLESSO

Definizione 31 Sia f una funzione derivabile in un intervallo I e xg un punto
di I. Se esistono due intervalli del tipo [x1,xq] e del tipo [xq,x2] tali che
la funzione sia convessa nel primo e concava nel secondo, oppure concava nel
primo e convessa nel secondo, allora il punto xq si dice punto di flesso per il
grafico di f (punto in cui cambia la concavita di f). La tangente al grafico nel
punto (xg, f (xg)) si dice tangente inflessionale.



Se una funzione & derivabile due volte, la sua derivata seconda f~ (zg) =0 in
un punto di flesso. La condizione di annullamento della derivata seconda in un
punto xg non implica perd automaticamente che xg debba essere di flesso. Ad
esempio f(x) = z* ha f” (0) = 0 ma x = 0 non puod essere di flesso perché
la funzione & convessa in tutto RR.

y A

Per scoprire se il punto xg nel quale si annulla la derivata seconda € un punto

. . . I . : :
di flesso bisogna esplorare il segno di f (x) a sinistra e a destra di xg. Se |
segni sono diversi si tratta di un flesso altrimenti no.



Esempio 32 Determinare i massimi, i minimi, i flessi e gli intervalli di crescenza,
decrescenza, concavita, convessita della funzione.
T
f(z) = oz
Inanzitutto il dominio della funzione é tutto R perché e* # 0 Vx € R. Com-
inciamo con il calcolare le derivate prima e seconda di f

/ e’ —xet (1 —x)
f@) = o=
" —e* —(1—=x)e? -2
f(z) = (ex)z T
. . . . / (1—x) . .
Studiamo il segno della derivata prima f (x) = — > O che é positiva

e

(funzione crescente) per x < 1, negativa (funzione decrescente) per x > 1 e
si annulla (tangente orizzontale) per x = 1, dove avra un punto di massimo
(relativo) in quanto é prima crescente e poi decrescente. L’ordinata del punto



di massimo (massimo relativo ma anche assoluto in quanto la funzione non

1
supera mai questo valore) sara f(1) = —, quindi
e

M(l,%)

/! — 2
Studiando il segno della derivata seconda f (x) = T

> 0 s/ ha invece

che é positiva (funzione convessa) per x > 2, negativa (funzione concava) per
x < 2, nulla per x = 2, dove ha un punto di flesso in quanto a sinistra di 2 é
concava, a destra é convessa. Le coordinate del flesso saranno

F (2,2/e?)
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Per calcolare la tagente inflessionale dobbiamo trovare il coefficiente angolare

della retta come derivata nel punto di flesso

/ 1
f(2) = 2

per cui I'equazione della tangente inflessionale sara :

Y- @)= @) -2) = y=—u+



Per raffinare ulteriormente le informazioni a nostra disposizione relative al
grafico di f calcoliamo anche i limiti per x — 400 per sapere “da dove
parte” e “dove arriva” il grafico della funzione.

_ x —00
lim = = —00
r——ooel 0+
_ x o0 . :
lim — = — =0 La retta y = 0 é asintoto orizzontale dx

r—+ooel oo
Controlliamo I'esistenza di un asintoto obliquo a —oo.

f@) _ L

lim = lim — = 400 non esistono asintoti obliqui
T——00 X r——00e’L

Inoltre é utile sapere se dove la funzione é positiva e dove no. Basta studiare
il segno di f(x)

x
f(x) = > 0 quando x > 0

L 'unica intersezione con gli assi é I'origine (0, 0).
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RIEPILOGO SU COME DISEGNARE IL GRAFICO DI UNA FUNZIONE

Data una funzione f, per tracciarne il grafico si procede con il seguente schema.

1. Si determina il dominio naturale.

2. Si calcolano le eventuali intersezioni con gli assi.

3. Si verifica quando la funzione é positiva, quando & negativa.

4. Si determinano tutti gli eventuali asintoti (compresi gli eventuali obliqui).



Si calcola la derivata prima e si deducono gli intervalli in cui la funzione
& crescente o decrescente e, di conseguenza, i massimi € minimi (assoluti
e/o relativi).

Si calcola la derivata seconda e si deducono gli intervalli in cui la funzione
& concava o convessa e, di conseguenza, i flessi (eventualmente tangente
inflessionale).

Si calcola esplicitamente il valore della funzione in qualche punto notevole.

Si riportano i risultati su un grafico che deve esplicitare tutti i risultati
trovati.



Schema riassuntivo dei punti critici

Un punto zg & detto critico se f’(xg) = 0 (punto stazionario) oppure se in
esso non esiste la derivata prima.

Punti stazionari: f’(zg) = 0. In tal caso il punto &:

- un punto di massimo o di minimo oppure un flesso a tangente
orizzontale.

Non esiste la derivata prima in xg pur essendo la funzione continua in xg.
Cid pud avvenire per diversi motivi:



1. Se f! (zg) =1 # m = f.(xq) allora (xg) & un punto angoloso. Si ha un
punto angoloso anche se una delle due derivate ¢ infinita.

y A

2. Se

lim f'(z) = +ooe lim f'(x) = —oo allora xg & una cuspide
T—Tq T—x

con vertice rivolto verso |'alto.



Se

lim f'(x)

a:—>:ca

. / . ;
—oo e lim f'(z) = 400 allora xg & una cuspide
CC—>$O

con vertice rivolto verso il basso.




3. Se

lim f'(x) = 400 allora zq & una flesso a tangente veritcale ascendente.
T—T(

Se

mlirra\j f'(x) = —oo allora g & una flesso a tangente veritcale discendente.
—ZQ

y A




Studiare le seguenti funzioni




y
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0.8 '-
0.6 '-
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0.2 1
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