
Introduzione a regressioni temporali e
previsioni

• Definizione di serie temporali.

• Domande le cui risposte necessitano dell’analisi
di serie temporali:
– Qual è l’effetto causale su una variabile di interesse Y

di un cambiamento di un’altra variabile X nel corso del
tempo?

– Qual è la migliore previsione che si può fare circa il
valore di una certa variabile a una data futura?



L’uso dei modelli di regressione per la
previsione

• Consideriamo il seguente problema: un genitore
che si sposta in un’area metropolitana nuova
deve scegliere dove vivere anche in relazione
all’offerta scolastica.

• Il problema è di prevedere la prestazione media
in un dato distretto sulla base di informazioni
correlate con i punteggi del test (dimensioni
classi).



• La regressione già vista
anche se presenta uno stimatore della pendenza distorto
(perché?) può essere utilizzata dal genitore per scegliere il
distretto.

• Al genitore non interessa la bontà della stima dell’effetto
causale della grandezza delle classi sui punteggi del test.
Ciò di cui ha bisogno è che la regressione spieghi buona
parte della variabilità nei punteggi tra i distretti e che sia
valida per i distretti che a lui interessano.

• L’obiettivo è quello di utilizzare valori noti di alcune
variabili per prevedere il valore di un’altra variabile.
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Serie temporali e correlazione seriale

• Un esempio di serie temporali è la relazione tra il
tasso d’inflazione e di disoccupazione negli USA.

• Le due figure rappresentano la variazione
percentuale annuale del livello dei prezzi negli
USA, misurato dall’indice dei prezzi al consumo
dal 1960 al 1999, e la frazione della forza lavoro
senza un’occupazione.





Terminologia

• Il valore di Y nel periodo precedente è chiamato il suo
primo ritardo ed è indicato con Yt-1. In modo analogo Yt+1
indica il valore di Y un periodo avanti nel tempo.

• La variazione del valore Y tra il periodo t-1 e il periodo t è
Yt-Yt-1. Tale variazione è detta differenza prima della
variabile Yt: ∆Yt= Yt-Yt-1.

• La variazione percentuale di una serie temporale Yt tra i
periodi t-1 e t è approssimativamente 100∆ln(Yt), dove
l’approssimazione è più accurata quando la variazione
percentuale è più piccola.

• Un esempio di ritardi, variazioni e variazioni percentuali è
illustrato dalla seguente tabella





Autocorrelazione

• Nelle serie temporali il valore di Y in un periodo è
solitamente correlato con il suo valore nel
periodo successivo.

• La correlazione di una serie con i propri valori
ritardati è detta autocorrelazione.

• La prima autocorrelazione o primo coefficiente di
correlazione è quella tra Yt e Yt-1.
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• La forte autocorrelazione positiva nell’inflazione riflette i
movimenti di lungo periodo dell’inflazione

• Essa era bassa nel primo trimestre del 1965 e nel secondo;
mentre era alta nel primo trimestre de 1981 e nel secondo.

• Diversamente l’autocorrelazione negativa della variazione
dell’inflazione significa che in media un aumento dell’inflazione
in un trimestre è associato con una diminuzione dell’inflazione
nel trimestre successivo.



Esempi

• Altri esempi di serie temporali sono
– Il tasso sui Federal Funds (tasso d’interesse delle

banche USA pagato ad altre banche per prestiti
overnight)

– Il tasso di cambio dollaro-sterlina
– Il PIL reale del Giappone su base trimestrale
– Il rendimento giornaliero dell’indice NYSE dei prezzi

delle azioni





• Le 4 serie mostrate hanno comportamenti molto
diversi.

• La prima richiama l’andamento del tasso
d’inflazione.

• La seconda mostra una discontinuità dopo il
crollo del sistema di cambio fissi di BW (1972)

• La terza è misurata il ln e mostra una crescita
regolare ancorché decrescente

• La quarta mostra l’imprevedibilità della variabile
analizzata con una varianza stazionaria.



Autoregressioni

• Un autoregressione è un modello di regressione che
mette in relazione una variabile temporale con i suoi valori
passati.

• Un modo sistematico per prevedere la variazione
dell’inflazione, ∆inft, usando la variaazione del trimestre
precedente, ∆inft-1, è quello di fare la seguente
regressione tramite gli OLS:

• Tale modello è detto autoregressione del primo ordine
poiché viene usato un solo ritardo come regressore.
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• Più in generale tale modello, detto AR(1), è scritto
Yt=β0+β1Yt-1+ut

• Usando gli OLS otteniamo la previsione di Yt basata sul
modello AR(1):

• L’errore di previsione è
• La previsione non è il valore predetto tramite gli OLS e

l’errore di previsione non è il residuo degli OLS.
• Le previsioni e gli errori di previsione riguardano le

osservazioni “fuori dal campione” mentre i valori predetti e
i residui riguardano le osservazioni “dentro il campione”

! 

ˆ Y 
t | t"1

= ˆ # 
0

+ ˆ # 
1
Y

t"1

! 

Y
t
" ˆ Y 

t | t"1



Radice2 dell’errore di previsione
quadratico medio (RMSFE)

• È una misura dell’entità dell’errore di previsione.

• L’RMSFE considera due fonti di errore:
– il fatto che i valori di ut sono ignoti
–  l’errore che scaturisce dalla stima dei coefficienti della

regressione
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Esempio

• Quale previsione dell’inflazione nel primo trimestre
del 2000 (2000:I) si sarebbe fatta nel 1999:IV,
basandosi sul modello AR(1)?

• Usando i valori della tabella precedente, vediamo che
il tasso d’inflazione in 1999:IV è (Inf1999:IV=3.2%) con
un aumento dello 0.4% rispetto al trimestre
precedente (∆inf1999:IV=0.4%).

• Sostituendo i valori nel modello, la previsione della
variazione dell’inflazione dal 1999:IV al 2000:I è
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• Il tasso d’inflazione predetto è quindi:

• Il tasso d’inflazione predetto nel 2000:I è

• Il valore attuale in 2000:I è stato 4.1%, quindi la previsione
AR(1) è minore di un punto percentuale. Inoltre l’R2

corretto è 0.04, quindi la previsione basata su un ritardo
non riesce a spiegare la maggior parte della variabilità
dell’inflazione nel campione considerato.
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Il modello autoregressivo di ordine p

• Con questo modello è possibile tenere in considerazione
le informazioni provenienti da un passato più remoto
introducendo maggiori ritardi.

• Ad esempio:

• I coefficienti degli ultimi 3 ritardi sono congiuntamente
significativi (F5%=6.43, valore-p<0.001) e l’R2 corretto è
0.21
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Regressioni temporali con predittori
addizionali e modello autoregressivo misto

• È il caso i cui si usano anche altre variabili ad un modello
autoregressivo.

• Ad esempio si può usare la disoccupazione per spiegare
l’inflazione:

• È la statistica t sul coefficiente della disoccupazione
significativo?

• Vi è un miglioramento nel modello?! 
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• La previsione dell’inflazione per il 2000:I ottenuta con la
nuova regressione è 3.7% con un errore di previsione che
è diminuito di 0.4%.

• Possiamo pensare di inserire ance qualche ritardo della
disoccupazione nel modello.

• La statistica F sia per tutti i coefficienti della
disoccupazione sia per i soli ritardi 2-4 è significativa.
L’errore di previsione dell’inflazione nel 2000:I rimane
piccolo, 0.4.
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Il modello autoregressivo misto (ADL)

• In generale un modello autoregressivo misto con
p ritardi della variabile dipendente e q ritardi di un
predittore addizionale è indicato con ADL(p,q).
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Assunzioni del modello di regressione
temporale

• La prima assunzione è che ut abbia media nulla
condizionatamente a tutti i regressori ed ai ritardi
addizionali dei regressori oltre a quelli già inseriti
in regressione

• La seconda assunzione è formata da 2 parti
– La prima è che i dati siano estratti da una distribuzione

stazionaria (versione temporale di i.d.)
– La seconda richiede che le variabili aleatorie diventino

indipendentemente distribuite al crescere della
distanza temporale che le separa (per grandi campioni
vi sia sufficiente aleatorietà tra i dati per utilizzare la
legge dei grandi numeri ed il teorema limite centrale)



• La terza assunzione è che tutte le variabili
abbiano 4 momenti finiti diversi da zero

• La quarta è che i regressori non siano
perfettamente collineari.

• Sulla base di queste assunzioni l’inferenza
tramite gli OLS sui coefficienti della regressione
non subisce variazioni



Test di causalità di Granger

• Un’applicazione della statisica F consiste nel verificare se i
ritardi di uno dei regressori inclusi abbia un utile potere
predittivo, aggiuntivo rispetto a quelli degli altri regressori del
modello

• La causalità nel senso di Granger significa che se X causa Y
allora X è un utile predittore per Y date altre variabili nella
regressione

• Considerando la stima dell’inflazione, la statistica F su tutti i
ritardi della disoccupazione siano nulli è 8.51 (p<0.001).

• Se da un lato si può dire che il tasso di disoccupazione causa,
nel senso di Granger, variazioni nel tasso d’inflazione. Da un
altro lato non si può dire che una variazione del tasso di
disoccupazione causerà una conseguente variazione nel tasso
d’inflazione.



Lunghezza dei ritardi

• Un primo approccio è quello della statistica F con il
problema che molte volte si generino modelli troppo
grandi.

• Un secondo approccio è il criterio d’informazione
Bayesian (BIC):

• Il primo termine abbiamo che SSR decresce quando
si aggiunge un ritardo. Diversamente, il secondo
termine cresce quando viene aggiunto un ritardo.

• Il BIC bilancia queste due forze in maniera tale che il
numero di ritardi che minimizza il BIC sia uno
stimatore consistente dell’ordine
dell’autoregressione.
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• Un criterio alternativo è il criterio d’informazione di Akaike
(AIC):

• Lo stimatore AIC di p non è consistente a causa della
sostituzione di ln(T) con 2. Tuttavia tale criterio è molto
diffuso nel caso in cui si teme che il BIC porti ad un
modello con troppo pochi ritardi.

• Anche nel caso di predittori multipli si utilizzano gli stessi
criteri.

• Due considerazioni:
– Tutti i modelli devono essere stimati sullo stesso campione
– Nel caso di predittori multipli, il BIC e l’AIC sono molto

dispendiosi in quando richiedono il calcolo di molti modelli.
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Esempio

 

# ritardi BIC AIC R
2 

0 1.095 1.076 0.000 

1 1.067 1.030 0.056 

2 0.955 0.900 0.181 

3 0.957 0.884 0.203 

4 0.986 0.895 0.204 

5 1.016 0.906 0.204 

6 1.046 0.918 0.204 

 

• Il BIC suggerisce 2 ritardi, l’AIC invece 3. 

• Se considerassimo l’R
2
, sceglieremmo sempre il modello con 

il maggio numero di ritardi 



Stazionarità

• Una serie temporale Yt è stazionaria se la sua
distribuzione di probabilità non cambia nel corso
del tempo, cioè, se la distribuzione congiunta di
(Ys+1, Ys+2,…, Ys+T) non dipende da s.

• Diversamente la serie Yt è detta non stazionaria.
• Due serie temporali sono dette congiuntamente

stazionarie se la distribuzione congiunta di (Xs+1,
Ys+1, Xs+2, Ys+2,…,Xs+T, Ys+T) non dipende da s.

• Il futuro sia come il passato in senso
probabilistico.



I trend

• Si intende il movimento persistente di lungo
periodo di una variabile nel corso del tempo. Si
dice che una variabile temporale fluttua attorno al
suo trend.

• Vi sono due tipi di trend:
– Deterministico che è una funzione non aleatoria del

tempo
– Stocastico che è aleatorio e varia nel tempo

• Modelleremo le serie temporali economiche
come se avessero un trend stocastico.



• Il più semplice modello di trend stocastico è la
random walk (passeggiata aleatoria): Yt=Yt-1+ut,
dove l’errore è i.i.d.

• L’idea di base è che il valore di una serie domani
è pari al valore di oggi più un imprevedibile
cambiamento. Quindi la migliore previsione del
valore di domani è il suo valore di oggi.

• In alcuni casi (ln(Pil) del Giappone) hanno una
chiara tendenza verso l’alto. In tali casi la miglior
previsione deve anche considerare un fattore
aggiuntivo.

• Si ottiene un modello di random walk with drift
(passeggiata aleatoria con deriva): Yt=β0+ Yt-1+ut.



• Se Yt segue una random walk allora non è
stazionaria: la varianza della random walk
aumenta nel corso del tempo e così facendo
cambia la distribuzione di Yt.

• La random walk è un caso speciale del modello
AR(1) in cui β1=1. Quindi possiamo dire che se Yt
segue un AR(1) con β1=1 allora Yt contiene un
trend stocastico ed è non stazionario.

• Se un AR(p) ha una radice uguale ad uno, si dice
che la serie ha una radice autoregressiva unitaria
o una radice unitaria. Se vi è una radice unitaria
allora vi è un trend stocastico e la serie non è
stazionaria.



Problemi causati dai trend stocastici
 Coefficienti autoregressivi che sono distorti

verso zero

• Se la serie temporale che segue una random
walk viene stimata come un modello AR(1)
normale non varranno le assunzioni degli OLS
per le serie temporali in quanto Yt non è
stazionaria.

• Lo stimatore OLS di β1 è consistente ma ha
una distribuzione non normale anche per
grandi campioni.

• Quindi le previsioni basate sul modello AR(1)
possono essere peggiori di quelle basata su
una random walk



Distribuzioni non normali delle statistiche t

• Se un regressore ha un trend stocastico allora la
statistica t degli OLS può avere una distribuzione
non normale sotto l’ipotesi nulla anche per grandi
campioni.

• Gli intervalli di confidenza non sono validi ed i
test di ipotesi non possono essere condotti come
in precedenza.



Regressione spuria
• I trend stocastici possono far sì che due serie

temporali sembrino in relazione quando in realtà
non lo sono.

• Consideriamo la seguente regressione relativa ai
dati da metà degli anni sessanta agli inizi degli
anni ottanta:

• La stessa regressione calcolata tra il 1982 ed il
1999 diventa:
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• La fonte dei risultati contrastanti è che entrambe
le serie hanno un trend stocastico. I trend si
allineano dal 1965 al 1981 ma divergono dal
1982 al 1999.

• Queste regressioni sono spurie.



Verifica della presenza di una radice
unitaria

• I metodi informali richiedono di esaminare un
grafico temporale dei dati ed il calcolo dei
coefficienti di autocorrelazione.

• Se il primo coefficiente di autocorrelazione
piccolo combinato con nessun trend apparente
dal grafico suggerisce che la serie non abbia
trend.

• Tuttavia, vi sono anche le procedure formali.



Il test di Dickey-Fuller per AR(1)

• L’ipotesi che Yt abbia un trendo si riduce a verificare:
H0: β1=1 contro H1: β1<1 nella Yt= β0+ β1Yt-1+ut

• Se β1=1, l’AR(1) ha una radice unitaria
autoregressiva pari ad uno, quindi l’ipotesi nulla è
che l’AR(1) abbia una radice unitaria e l’alternativa è
che esso sia stazionario.

• Lo stesso test si può fare stimando una versione
modificata della precedente ipotesi nulla, sottraendo
all’AR(1) Yt-1 da entrambi i lati. Sia δ=β1-1, allora
avremo

H0: δ =0 contro H1: δ <0 in ∆Yt= β0+ δ Yt-1+ut
• La statistica t degli OLS per la verifica di δ=0 è detta

statistica di Dickey-Fuller. Tale statistica è calcolata
utilizzando errori “non robusti”.



Il test Dickey-Fuller aumentato (ADF)

• Il test ADF per una radice autoregressiva unitaria
verifica l’ipotesi nulla H0: δ=0 contro l’alternativa
unilaterale H0: δ<0 nella regressione
∆Yt=β0+δYt-1+γ1 ∆Yt-1+ γ2 ∆Yt-2+…+ γp ∆Yt-p+ut

• Sotto l’ipotesi nulla, Yt ha un trend stocastico
diversamente è stazionaria. La statistica ADF è
la statistica OLS che verifica δ=0.



• Se l’ipotesi alternativa è che Yt sia stazionaria
attorno a un trend deterministico, allora il trend t
deve essere aggiunto come regressore
addizionale, e in questo caso la regressione di
Dickey-Fuller diventa
∆Yt=β0+αt+δYt-1+γ1 ∆Yt-1+ γ2 ∆Yt-2+…+ γp ∆Yt-p+ut

• I valori critici per il test ADF unilaterale variano a
seconda che si includa o meno il trend
deterministico.





Esempio

• Consideriamo il modello ADF

• La statistica t dell’ADF è la statistica t che verifica l’ipotesi
nulla sul coefficiente di Inft-1, t=-2.60

• Confrontando la tabella si vede che -2.60<-2.86 e quindi non
rifiuta l’ipotesi nulla. Quindi l’inflazione contiene un trend
stocastico.

• Se la lunghezza dei ritardi fosse stata decisa tramite l’AIC
avremmo avuto 3 ritardi e non quattro.

• Anche in questo caso l’ipotesi nulla non può essere rifiutata
al 5%. Tuttavia, considerando il livello del 10% i test rifiutano
l’ipotesi nulla
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Le rotture strutturali (structural breaks)

• Il secondo tipo di non stazionarietà nasce quando la
funzione di regressione cambia all’interno del campione.

• Tali cambiamenti possono comparire a causa di un netto
cambiamento nei coefficienti della regressione ad una
data precisa o da una graduale evoluzione dei coefficienti
nel corso di un periodo di tempo più lungo.

• I problemi causati sono che le stime OLS per l’intero
campione stimeranno una relazione valida “in media”
combinando gli effetti dei differenti periodi.

• A seconda della posizione e dell’ampiezza della rottura, la
funzione di regressione “media” può essere molto diversa
dalla vera funzione di regressione alla fine del campione.



Verifica di ipotesi

• Si verifica la presenza di cambiamenti netti nei coefficienti
di regressione. Tale metodo dipende dalla conoscenza o
meno della possibile data di rottura.

• Nel caso di data nota (Bretton Woods, 1972), utilizziamo
un modello simile a quelli visti la settimana scorsa
Yt=β0+β1Yt-1+δ1Xt-1+γ0Dt(τ)+γ1 [Dt(τ)xYt-1]+
+γ2 [Dt(τ)x Xt-1]+ut

• Se non c’è rottura allora la funzione di regressione è la
stessa in entrambe le porzioni del campione e quindi i
termini che contengono la variabile binaria Dt(τ) non
entrano nella regressione. Cioè H0: γ0=γ1=γ2=0.

• Per verificare tale ipotesi si usa la statistica F per
effettuare il Chow test.



• Nel caso di data ignota o conosciuta solo entro
un intervallo si può utilizzare una versione
modificata del Chow test chiamata statistica del
rapporto delle verosimiglianze (QLR).

• Esso si basa sul valore più elevato della statistica
F all’interno dell’intervallo considerato.
– Può essere usato per verificare una rottura in tutti o

solo alcuni dei coefficienti
– Per grandi campioni, la distribuzione della statistica

QLR sotto l’ipotesi nulla dipende dal numero di
restrizioni da verificare, q, e dai punti estremi τ0 e τ1
come frazione di T

– Solitamente si sceglie un troncamento al 15% con τ
0=0.15T e τ1=0.85T.



La curva di Philips

• Considerando il modello ADL(4,4)

• Possiamo applicare il test QLR per vedere se tale curva è
stata stabile nel periodo 1962-1999.

• La statistica F per la verifica della presenza di una rottura
nel 1980:I è 2.26. Ogni statistica F verifica per 5 restrizioni
e quindi q=5. La più grande è 3.53 (1982:II), questa è la
statistica QLR.

• Confrontando tale statistica con  valori critici per q=5,
l’ipotesi nulla (coeff. Stabili) è rifiutata al 10% ma non al
5%.
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Pseudo previsioni fuori campione

• Il test ultimo di un modello di previsione è la
sua prestazione fuori campione.

• La pseudo previsione fuori campione è un
metodo per simulare la prestazione in tempo
reale del modello di previsione.



1. Si scelga un numero di osservazioni P per cui
si genereranno pseudo previsioni fuori
campione. Ad es. P=10%. Sia s=T-P

2. Si stimi la regressione di previsione usando
l’insieme troncato di dati per t=1,…,s.

3. Si calcoli la previsione per il primo periodo oltre
il campione trocato, s+1,

4. Si calcoli l’errore di previsione
5. Si ripetano le fasi 2-4 per le restanti date da

s=T-P a s=T-1.
! 
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! 
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• Usando date multiple vicine alla fine del
campione si ottengono una serie di pseudo
previsioni e quindi di errori di pseudo previsione.

• Sono pseudo in quanto si utilizza il proprio
modello per simulare delle previsioni in tempo
reale (conosciamo i valori futuri della serie).

• Tale metodo dà a chi effettua previsioni un senso
di quanto bene il modello stia prevedendo la fine
del campione.



La curva di Philips
• Sono state calcolate le pseudo previsioni fuori campione

per il periodo 1994:I-1999:IV utilizzando una curva di
Philips a 4 ritardi.

• La previsione per 1994:I è stata calcolata con la funzione
di regressione utilizzando i dati fino al 1993:IV e poi
calcolando la previsione del 1994:I con i coefficienti stimati
ed i dati fino al 1993:IV. Ripetendo tale operazione per i
24 trimestri otteniamo 24 pseudo previsioni.

• Le pseudo previsioni in figura seguono abbastanza bene
l’inflazione effettiva ma sono mediamente più alte. Tale
distorsione può essere stata causata da un declino del
tasso naturale di disoccupazione che potrebbe
manifestarsi come uno spostamento dell’intercetta della
curva di Philips.




