Introduzione a regressioni temporali e
previsioni

» Definizione di serie temporali.

 Domande le cui risposte necessitano dell’'analisi
di serie temporali:

— Qual e l'effetto causale su una variabile di interesse Y
di un cambiamento di un’altra variabile X nel corso del
tempo?

— Qual e la migliore previsione che si puo fare circa |l
valore di una certa variabile a una data futura?



L'uso dei modelli di regressione per la
previsione

« Consideriamo il seguente problema: un genitore
che si sposta in un’area metropolitana nuova
deve scegliere dove vivere anche in relazione
all'offerta scolastica.

|l problema e di prevedere la prestazione media
in un dato distretto sulla base di informazioni
correlate con i punteggi del test (dimensioni
classi).



La regressione gia vista Testscore =698.9 —2.28 * STR

anche se presenta uno stimatore della pendenza distorto
(perché?) pud essere utilizzata dal genitore per scegliere il
distretto.

Al genitore non interessa la bonta della stima dell’effetto
causale della grandezza delle classi sui punteggi del test.
Cio di cui ha bisogno € che la regressione spieghi buona
parte della variabilita nei punteggi tra i distretti e che sia
valida per i distretti che a lui interessano.

L’'obiettivo € quello di utilizzare valori noti di alcune
variabili per prevedere il valore di un’altra variabile.



Serie temporali e correlazione seriale

* Un esempio di serie temporali € |la relazione tra |l
tasso d'inflazione e di disoccupazione negli USA.

* Le due figure rappresentano la variazione
percentuale annuale del livello del prezzi negli
USA, misurato dall'indice dei prezzi al consumo
dal 1960 al 1999, e la frazione della forza lavoro
senza un’'‘occupazione.



FIGURE 14.1

Inflation and Unemployment in the United States, 1960—-2004
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Price inflation in the United States (Figure 14.1a) drifted upward from 1260 until 1980, and then fell sharply during
the early 1980s.The unemployment rate in the United States (Figure 14.1b) rises during recessions (the shaded

episodes) and falls during expansions.




Terminologia

Il valore di Y nel periodo precedente e chiamato il suo
primo ritardo ed € indicato con Y, . In modo analogo Y/,
indica il valore di Y un periodo avanti nel tempo.

La variazione del valore Y tra il periodo t-1 e il periodo t e
Y-Y,,. Tale variazione e detta differenza prima della
variabile Y,: AY =YY, ,.

La variazione percentuale di una serie temporale Y, tra i
periodi t-1 e t & approssimativamente 100AIn(Y,), dove
I'approssimazione € piu accurata quando la variazione
percentuale € piu piccola.

Un esempio di ritardi, variazioni e variazioni percentuali e
illustrato dalla seguente tabella



TABLE 14.1 Inflation in the United States in 2004 and the First Quarter of 2005
Rate of Inflation at an First Lag Change in

Quarter U.S. CPI Annual Rate (Inf) (Inf,_,) Inflation (Alnf)
2004:1 186.57 3.8 0.9 2.9
2004:11 188.60 4.4 \ 3.8 0.6
2004111 189.37 1.6 \ 4.4 —-2.8
2004:1V 191.03 3.5 \ 1.6 1.9
2005:1 192.17 2.4 \ 35 =1

The annualized rate of inflation is the percentage change in the CPI from the previous quarter to the current quarter, times four.
The first lag of inflation is its value in the previous quarter, and the change in inflation is the current inflation rate minus its first
lag. All entries are rounded to the nearest decimal.




Autocorrelazione

* Nelle serie temporali il valore di Y in un periodo €
solitamente correlato con il suo valore nel
periodo successivo.

* La correlazione di una serie con I propri valori
ritardati € detta autocorrelazione.

« La prima autocorrelazione o primo coefficiente di
correlazione e quellatra Y, e Y, ,.

autocov arianza = COV(K,K_ j)
COV(K,K_J.)

\/ var(Y,) V&I‘(Yt_j)

autocorrelazione = p ; = corr(Yt,Yt_j) =



TABLE 14.2  First Four Sample Autocorrelations of the
U.S. Inflation Rate and Its Change, 1960:1-2004:1V

Avutocorrelation of:

Lag Inflation Rate (Inf,) Change of Inflation Rate (Alnf)
1 0.84 —0.26
2 0.76 -0.25

| 3 0.76 0.29

| 4 0.67 —0.06

» La forte autocorrelazione positiva nell'inflazione riflette |
movimenti di lungo periodo dell'inflazione

» Essa era bassa nel primo trimestre del 1965 e nel secondo;
mentre era alta nel primo trimestre de 1981 e nel secondo.

» Diversamente l'autocorrelazione negativa della variazione
dell’inflazione significa che in media un aumento dell’inflazione
in un trimestre € associato con una diminuzione dell'inflazione
nel trimestre successivo.



Esempi

* Altri esempi di serie temporali sono

— |l tasso sui Federal Funds (tasso d’interesse delle
banche USA pagato ad altre banche per prestiti
overnight)

— |l tasso di cambio dollaro-sterlina
— |l PIL reale del Giappone su base trimestrale

— Il rendimento giornaliero dellindice NYSE dei prezzi
delle azioni
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Le 4 serie mostrate hanno comportamenti molto
diversi.

La prima richiama I'andamento del tasso
d’'inflazione.

La seconda mostra una discontinuita dopo il
crollo del sistema di cambio fissi di BW (1972)

La terza € misurata il In e mostra una crescita
regolare ancorché decrescente

La quarta mostra I'imprevedibilita della variabile
analizzata con una varianza stazionaria.



Autoregressioni

Un autoregressione € un modello di regressione che
mette in relazione una variabile temporale con i suoi valori
passati.

Un modo sistematico per prevedere la variazione
dell’inflazione, Ainf,, usando la variaazione del trimestre
precedente, Ainf,_,, € quello di fare la seguente
regressione tramite gli OLS:

Alnf, =0.02-0.211AInf,_,

(0.14)  (0.106)

Tale modello e detto autoregressione del primo ordine
poiché viene usato un solo ritardo come regressore.



Piu in generale tale modello, detto AR(1), € scritto
Y=BotB1YqtUy

Usando gli OLS otteniamo la previsione di Y, basata sul

modello AR(1): Y [30 + [51 -

A

L'errore di previsionee Y -Y,

La previsione non € il valore predetto tramite gli OLS e
I'errore di previsione non € il residuo degli OLS.

Le previsioni e gli errori di previsione riguardano le
osservazioni “fuori dal campione” mentre i valori predetti e
| residui riguardano le osservazioni “dentro il campione”



Radice? dell’errore di previsione
quadratico medio (RMSFE)

 E una misura dell’entita dell’errore di previsione.

RMSFE = \|E[(¥,-¥,,,)’]

* L'RMSFE considera due fonti di errore:
— il fatto che i valori di u, sono ignoti

— lerrore che scaturisce dalla stima dei coefficienti della
regressione



Esempio

* Quale previsione dellinflazione nel primo trimestre
del 2000 (2000:I) si sarebbe fatta nel 1999:1V,
basandosi sul modello AR(1)?

Alnf, = 0.02-021 11,

« Usando i valori della tabella precedente, vediamo che
il tasso d’inflazione in 1999:1V & (Inf,ggq.,,=3-2%) coON
un aumento dello 0.4% rispetto al trimestre
precedente (Ainf,ggg.n,=0.4%).

« Sostituendo i valori nel modello, la previsione della
variazione dell'inflazione dal 1999:1V al 2000:1 €

AIff 0, =0.02=0.211x Ainf o, , =0.02-0.211x0.4 = -0.06 = —0.1



|l tasso d'inflazione predetto € quindi:
Iﬁftlt—l = Inf,_, + Mﬁftlt—l

« |l tasso d'inflazione predetto nel 2000:1 &
Infro0; = 119001y + AlNf o000, = 3.2% = 0.1% = 3.1%

|l valore attuale in 2000:1 € stato 4.1%, quindi la previsione
AR(1) & minore di un punto percentuale. Inoltre I'R?
corretto € 0.04, quindi la previsione basata su un ritardo
non riesce a spiegare la maggior parte della variabilita
dell'inflazione nel campione considerato.



Il modello autoregressivo di ordine p

« Con questo modello € possibile tenere in considerazione
le informazioni provenienti da un passato piu remoto
iIntroducendo maggiori ritardi.

Y, =Byt BY +BY ..+ BY,_, +u, dove E(u]Y,_ .Y, .. )=0

 Ad esempio:

Alnf, =0.02-0.21AInf,_, —0.32Alnf,_, + 0.19Alnf,_, —0.04 Alnf,_,

(0.12) (0.1) (0.09) (0.09) (0.1)

| coefficienti degli ultimi 3 ritardi sono congiuntamente
significativi (F,=6.43, valore-p<0.001) e I'R? corretto &
0.21



Regressioni temporali con predittori
addizionali e modello autoregressivo misto

E il caso i cui si usano anche altre variabili ad un modello
autoregressivo.

Ad esempio si puo usare la disoccupazione per spiegare
I'inflazione:

Alnf, =1.42-0.26 Alnf,_, —0.40Alnf,_, + 0.11AInf,_, - 0.09Alnf,_,

(0.55)  (0.09) (0.1) (0.08) (0.1)

-0.23Unemp, ,,R* =0.22

(0.1)

E la statistica t sul coefficiente della disoccupazione
significativo?
Vi € un miglioramento nel modello?
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« La previsione dell’inflazione per il 2000:I ottenuta con la
nuova regressione € 3.7% con un errore di previsione che
e diminuito di 0.4%.

« Possiamo pensare di inserire ance qualche ritardo della
disoccupazione nel modello.

Alnf, =1.32- 0.36 Alnf,_, — 0.34 Alnf,_, + 0.07 Alnf,_, — 0.03Alnf,_,

(0.47)  (0.09) (0.1 (0.08) (0.09)
- (20.'4675)§AUnempt_l + %O.élg?AUnempt_z — 1(0(33 AUnemp, , + (()d'g)gAUnempt_él,
R*=0.35

« La statistica F sia per tutti i coefficienti della
disoccupazione sia per i soli ritardi 2-4 € significativa.
L’errore di previsione dell’inflazione nel 2000:1 rimane
piccolo, 0.4.



Il modello autoregressivo misto (ADL)

* |n generale un modello autoregressivo misto con
p ritardi della variabile dipendente e q ritardi di un
predittore addizionale € indicato con ADL(p,q).

Y =By +BY_+BY ,+..+BY_ +0X,_ +0,X _,+

pt-p
+ot 8,X,_ +u, dove E(u |V, Y, 5. X, . X, ,,...) =0



Assunzioni del modello di regressione
temporale

 La prima assunzione e che u, abbia media nulla
condizionatamente a tutti i regressori ed ai ritardi
addizionali dei regressori oltre a quelli gia inseriti
INn regressione

« La seconda assunzione € formata da 2 partsi

— La prima e che i dati siano estratti da una distribuzione
stazionaria (versione temporale dii.d.)

— La seconda richiede che le variabili aleatorie diventino
Indipendentemente distribuite al crescere della
distanza temporale che le separa (per grandi campioni
vi sia sufficiente aleatorieta tra i dati per utilizzare la
legge dei grandi numeri ed il teorema limite centrale)



 |Laterza assunzione e che tutte le variabili
abbiano 4 momenti finiti diversi da zero

« La quarta e che i regressori non siano
perfettamente collineari.

« Sulla base di queste assunzioni l'inferenza
tramite gli OLS sui coefficienti della regressione
non subisce variazioni



Test di causalita di Granger

Un’applicazione della statisica F consiste nel verificare se |
ritardi di uno dei regressori inclusi abbia un utile potere
predittivo, aggiuntivo rispetto a quelli degli altri regressori del
modello

La causalita nel senso di Granger significa che se X causa Y
allora X € un utile predittore per Y date altre variabili nella
regressione

Considerando la stima dell’'inflazione, la statistica F su tutti i
ritardi della disoccupazione siano nulli € 8.51 (p<0.001).

Se da un lato si pu0 dire che il tasso di disoccupazione causa,
nel senso di Granger, variazioni nel tasso d’inflazione. Da un
altro lato non si puo dire che una variazione del tasso di
disoccupazione causera una conseguente variazione nel tasso
d’'inflazione.



Lunghezza dei ritardi

Un primo approccio € quello della statistica F con |l
problema che molte volte si generino modelli troppo
grandi.

Un secondo approccio € il criterio d'informazione

Bayesian (B'C) SSR(p))+( +1)ln(T)
T P T

BIC(p) = ln(

Il primo termine abbiamo che SSR decresce quando
si aggiunge un ritardo. Diversamente, il secondo
termine cresce quando viene aggiunto un ritardo.

l| BIC bilancia queste due forze in maniera tale che il
numero di ritardi che minimizza il BIC sia uno
stimatore consistente dell’'ordine
dell’autoregressione.



Un criterio alternativo ¢ il criterio d'informazione di Akaike
(AIC): SSI;(p)) (pe) 2

BIC(p) = ln( -

Lo stimatore AIC di p non e consistente a causa della
sostituzione di In(T) con 2. Tuttavia tale criterio € molto
diffuso nel caso in cui si teme che il BIC porti ad un
modello con troppo pochi ritardi.

Anche nel caso di predittori multipli si utilizzano gli stessi
criteri.

Due considerazioni:

— Tutti i modelli devono essere stimati sullo stesso campione

— Nel caso di predittori multipli, il BIC e 'AIC sono molto
dispendiosi in quando richiedono il calcolo di molti modelii.



Esempio

# ritardi BIC AlIC R*
0 1.095 1.076 0.000
1 1.067 1.030 0.056
2 0.955 0.900 0.181
3 0.957 0.884 0.203
4 0.986 0.895 0.204
5 1.016 0.906 0.204
6 1.046 0.918 0.204

Il BIC suggerisce 2 ritardi, I’AIC invece 3.
Se considerassimo 1’R?, sceglieremmo sempre il modello con
il maggio numero di ritardi



Stazionarita

Una serie temporale Y, e stazionaria se la sua
distribuzione di probabilita non cambia nel corso
del tempo, cioe, se la distribuzione congiunta di
(Your, Y Y..t) hon dipende da s.

s+1r g+
Diversamente la serie Y, € detta non stazionaria.

Due serie temporali sono dette congiuntamente
stazionarie se la distribuzione congiunta di (X,
Yoii, Xeoo, Y X..1» Y1) NON dipende da s.

s+1r MNe+21 | g4210 -3 N+ Ty
Il futuro sia come il passato in senso
probabillistico.



| trend

« Siintende il movimento persistente di lungo
periodo di una variabile nel corso del tempo. Si
dice che una variabile temporale fluttua attorno al
suo trend.

* Vi sono due tipi di trend:

— Deterministico che & una funzione non aleatoria del
tempo

— Stocastico che € aleatorio e varia nel tempo

 Modelleremo le serie temporali economiche
come se avessero un trend stocastico.



Il piu semplice modello di trend stocastico ¢ la
random walk (passeggiata aleatoria): Y=Y _,+u,,
dove l'errore € 1.i.d.

L’'idea di base e che il valore di una serie domani
e pari al valore di oggi piu un imprevedibile
cambiamento. Quindi la migliore previsione del
valore di domani e il suo valore di oggi.

In alcuni casi (In(Pil) del Giappone) hanno una
chiara tendenza verso l'alto. In tali casi la miglior
previsione deve anche considerare un fattore
aggiuntivo.

Si ottiene un modello di random walk with drift
(passeggiata aleatoria con deriva): Y, =p,+ Y, ,*Uu,



« Se Y, segue una random walk allora non e
stazionaria: la varianza della random walk
aumenta nel corso del tempo e cosi facendo
cambia la distribuzione di Y,.

« La random walk e un caso speciale del modello
AR(1) in cui B,=1. Quindi possiamo dire che se Y,
segue un AR(1) con pB,=1 allora Y, contiene un
trend stocastico ed € non stazionario.

« Se un AR(p) ha una radice uguale ad uno, si dice
che la serie ha una radice autoregressiva unitaria
O una radice unitaria. Se vi € una radice unitaria
allora vi e un trend stocastico e la serie non &
stazionaria.



Problemi causati dai trend stocastici
Coefficienti autoregressivi che sono distorti
Verso zero

Se la serie temporale che segue una random
walk viene stimata come un modello AR(1)
normale non varranno le assunzioni degli OLS
per le serie temporali in quanto Y, non e
stazionaria.

Lo stimatore OLS di 8, € consistente ma ha
una distribuzione non normale anche per
grandi campioni.

Quindi le previsioni basate sul modello AR(1)

pPOosSsono essere peggiori di quelle basata su
una random walk



Distribuzioni non normali delle statistiche t

* Se un regressore ha un trend stocastico allora la
statistica t degli OLS puo6 avere una distribuzione
non normale sotto I'ipotesi nulla anche per grandi
campioni.

 Gliintervalli di confidenza non sono validi ed |

test di ipotesi non possono essere condotti come
In precedenza.



Regressione spuria

| trend stocastici possono far si che due serie
temporali sembrino in relazione quando in realta
non lo sono.

« Consideriamo la seguente regressione relativa ai
dati da meta degli anni sessanta agli inizi degli
anni ottanta:

U.S Inﬂatzon = -2.84+0.18 JapanesePIL,,R* = 0.56

(0.08) (0.02)

» La stessa regressione calcolata tra il 1982 ed |
1999 diventa:

U.S Inﬂatlon = 6.25-0.03 JapanesePIL,,R* = 0.07

(1.37)  (0.01)
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« |La fonte dei risultati contrastanti € che entrambe
le serie hanno un trend stocastico. | trend si
allineano dal 1965 al 1981 ma divergono dal
1982 al 1999.

* Queste regressioni sono spurie.



Verifica della presenza di una radice
unitaria

| metodi informali richiedono di esaminare un
grafico temporale dei dati ed il calcolo dei
coefficienti di autocorrelazione.

« Se il primo coefficiente di autocorrelazione
piccolo combinato con nessun trend apparente
dal grafico suggerisce che la serie non abbia

trend.

« Tuttavia, vi sono anche le procedure formali.



Il test di Dickey-Fuller per AR(1)

» L’ipotesi che Y, abbia un trendo si riduce a verificare:
Hy: p4=1 contro H,: B,<1 nella Y= 3o+ B,Y1+U;

+ Se B4=1, 'AR(1) ha una radice unitaria
autoregressiva pari ad uno, quindi l'ipotesi nulla e
che '’AR(1) abbia una radice unitaria e I'alternativa e
che esso sia stazionario.

» Lo stesso test si puo fare stimando una versione
modificata della precedente ipotesi nulla, sottraendo
al’AR(1) Y, ,da entrambi i lati. Sia d=84-1, allora
avremo

Hy: 0 =0 contro H,: 6 <0 in AY,= By+ 0 Y, {+U;

« La statistica t degli OLS per la verifica di =0 € detta

statistica di Dickey-Fuller. Tale statistica e calcolata
utilizzando errori “non robusti’.



Il test Dickey-Fuller aumentato (ADF)

* |l test ADF per una radice autoregressiva unitaria
verifica I'ipotesi nulla H,: 6=0 contro l'alternativa

unilaterale H,: 8<0 nella regressione
AY =g tOY 11 AY g Yo AY ot Y AY U

 Sotto l'ipotesi nulla, Y, ha un trend stocastico
diversamente é stazionaria. La statistica ADF e
|a statistica OLS che verifica 6=0.



+ Se l'ipotesi alternativa e che Y, sia stazionaria
attorno a un trend deterministico, allora il trend t
deve essere aggiunto come regressore
addizionale, e in questo caso la regressione di
Dickey-Fuller diventa

AY =P +at+oY 14y AY 1+ v AY o+ v AY HU,

| valori critici per il test ADF unilaterale variano a
seconda che si includa o meno il trend
deterministico.



TABLE 14.5 Llarge-Sample Critical Values of the Augmented Dickey-Fuller Statistic

Deterministic Regressors 10% 5% 1%

Intercept only —2.57 —2.86 —3.43
Intercept and time trend =8:12 —3.41 —3.96




Esempio

 Consideriamo il modello ADF
AIff, =0.53-0.11Inf,_ -0.14 Alnf,_,—0.25 AInf,_, -0.24 AInf,_, +0.01AInf,_,

(0.23)  (0.04) (0.08) (0.08) (0.08) (0.08)
« La statistica t dellADF e la statistica t che verifica 'ipotesi
nulla sul coefficiente di Inf,_,, t=-2.60

« Confrontando la tabella si vede che -2.60<-2.86 e quindi non
rifiuta I'ipotesi nulla. Quindi I'inflazione contiene un trend
stocastico.

« Se lalunghezza dei ritardi fosse stata decisa tramite 'AIC
avremmo avuto 3 ritardi e non quattro.

* Anche in questo caso l'ipotesi nulla non puo essere rifiutata
al 5%. Tuttavia, considerando il livello del 10% i test rifiutano
I'ipotesi nulla



Le rotture strutturali (structural breaks)

Il secondo tipo di non stazionarieta nasce quando la
funzione di regressione cambia all'interno del campione.

Tali cambiamenti possono comparire a causa di un netto
cambiamento nei coefficienti della regressione ad una
data precisa o da una graduale evoluzione dei coefficients
nel corso di un periodo di tempo piu lungo.

| problemi causati sono che le stime OLS per l'intero
campione stimeranno una relazione valida “in media”
combinando gli effetti dei differenti periodi.

A seconda della posizione e dellampiezza della rottura, la
funzione di regressione “media” puo essere molto diversa
dalla vera funzione di regressione alla fine del campione.



Verifica di ipotesi

Si verifica la presenza di cambiamenti netti nei coefficienti
di regressione. Tale metodo dipende dalla conoscenza o
meno della possibile data di rottura.

Nel caso di data nota (Bretton Woods, 1972), utilizziamo
un modello simile a quelli visti la settimana scorsa

Y =BotB1YqT04 X4 H1oDy(t)+y4 [Dy(T)XY 4]+
+y, [Dy(T)X X 1]+u,

Se non c’e rottura allora la funzione di regressione ¢ la
stessa in entrambe le porzioni del campione e quindi |
termini che contengono la variabile binaria D,(t) non
entrano nella regressione. Cioe H;: y,=y,=y,=0.

Per verificare tale ipotesi si usa la statistica F per
effettuare il Chow test.



* Nel caso di data ignota o conosciuta solo entro
un intervallo si puo utilizzare una versione
modificata del Chow test chiamata statistica del
rapporto delle verosimiglianze (QLR).

« Esso si basa sul valore piu elevato della statistica
F all'interno dell’intervallo considerato.

— Puo essere usato per verificare una rottura in tutti o
solo alcuni dei coefficienti

— Per grandi campioni, la distribuzione della statistica
QLR sotto l'ipotesi nulla dipende dal numero di
restrizioni da verificare, q, e dai punti estremi t, e T,
come frazione di T

— Solitamente si sceglie un troncamento al 15% con t
0=0.15T e t,=0.85T.



La curva di Philips

 Considerando il modello ADL(4,4)

Alnf, =1.32- 0.36 Alnf,_, — 0.34 Alnf,_, + 0.07 Alnf,_, — 0.03Alnf,_,

(0.47)  (0.09) (0.1 (0.08) (0.09)
- (20.'4675)§AUnempt_l + %O.élg?AUnempt_z — 1(0(33 AUnemp, , + (()d'g)gAUnempt_él,
R*=0.35

« Possiamo applicare il test QLR per vedere se tale curva e
stata stabile nel periodo 1962-1999.

« La statistica F per la verifica della presenza di una rottura
nel 1980:1 e 2.26. Ogni statistica F verifica per 5 restrizioni
e quindi g=5. La piu grande € 3.53 (1982:1l), questa ¢ la
statistica QLR.

« Confrontando tale statistica con valori critici per g=5,

I'ipotesi nulla (coeff. Stabili) e rifiutata al 10% ma non al
5%.
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Pseudo previsioni fuori campione

Il test ultimo di un modello di previsione € la
sua prestazione fuori campione.

La pseudo previsione fuori campione € un
metodo per simulare la prestazione in tempo
reale del modello di previsione.



Si scelga un numero di osservazioni P per cui
si genereranno pseudo previsioni fuori
campione. Ad es. P=10%. Sia s=T-P

Si stimi la regressione di previsione usando
I'insieme troncato di dati per t=1,...,s.

Si calcoli la previsione per il primo periodo oltre
il campione trocato, s+1, Y,

s+1ls

Si calcoli I'errore di previsione i, =Y, -

Si ripetano le fasi 2-4 per le restanti date da
s=T-P a s=T-1.

~

Y

s+l1ls



« Usando date multiple vicine alla fine del
campione si ottengono una serie di pseudo
previsioni e quindi di errori di pseudo previsione.

« Sono pseudo in quanto si utilizza il proprio
modello per simulare delle previsioni in tempo
reale (conosciamo i valori futuri della serie).

« Tale metodo da a chi effettua previsioni un senso
di quanto bene il modello stia prevedendo la fine
del campione.



La curva di Philips

Sono state calcolate le pseudo previsioni fuori campione
per il periodo 1994:1-1999:1V utilizzando una curva di
Philips a 4 ritardi.

La previsione per 1994:1 € stata calcolata con la funzione
di regressione utilizzando i dati fino al 1993:1V e poi
calcolando la previsione del 1994:1 con i coefficienti stimati
ed i dati fino al 1993:1V. Ripetendo tale operazione per i
24 trimestri otteniamo 24 pseudo previsioni.

Le pseudo previsioni in figura seguono abbastanza bene
I'inflazione effettiva ma sono mediamente piu alte. Tale
distorsione puo essere stata causata da un declino del
tasso naturale di disoccupazione che potrebbe
manifestarsi come uno spostamento dell'intercetta della
curva di Philips.
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